

www.tangentapi.com

Tangent API Copyright © 2008-2010 Nilesh

Humbad. All rights reserved.

Tangent API (Application Programming Interface)

COM DLL (32-bit): TangentAPI.dll

COM DLL (64-bit): TangentAPIx64.dll

API Version: 2010.8.24

Server ProgID: TangentAPI.Server

Client ProgID: TangentAPI.Client

Threading Model: Both

Supported Languages: C#, VB.NET, Managed C++, Visual C++, VB6, Jscript, VBScript, and any other

language that supports COM.

This document describes Tangent API mostly from the perspective of .NET.

Server Methods:

void Startup (string ipAddress, short port, int maxClientConnections);

Starts up a server on the specified IP address and TCP port. Once started up, the server begins listening for

new clients to connect. Also, once started up, the server is ready to send and receive data between connected

clients. After the maximum number of client connections specified has been obtained, the server stops

listening for new clients. If a client subsequently disconnects, therefore freeing up a client connection slot, the

server then begins listening for new clients once again.

void ShutDown ();

Shuts down a server. The server stops listening for new clients, and all clients that are connected get

disconnected.

void SendDataToClient (int clientID, object data);

Sends data to a specified client that is connected to the server. The data is of type object, which allows a

number of types as described in the Object Data section.

void SendDataToAllClients (object data);

Sends data to all clients connected to the server. The data is of type object, which allows a number of types as

described in the Object Data section.

object GetConnectedClientIDs ();

Retrieves client IDs of all the clients that are connected to the server. The object returned is of type object[]

array, and each individual element in this object[] array is of type int that specifies a client ID. Returns a zero-

length object array if no clients are connected. In C++, the return type is a VARIANT which is of type

VT_ARRAY | VT_VARIANT (a SafeArray of variants), where each array element is a VARIANT of type

VT_I4.

void DisconnectClient (int clientID);

Disconnects the specified client from the server.

www.tangentapi.com

Tangent API Copyright © 2008-2010 Nilesh

Humbad. All rights reserved.

void StartBroadcastingIPAddress (short udpPort);

Broadcasts the IP address of the running server on the specified UDP port. Once broadcasting starts, clients

can get the IP address of the server. After a client obtains this IP address, the client can then use it to facilitate

a connection to the server. This allows a “zero-configuration” client to connect to a server, meaning, the IP

address does not have to be known or configured for a client in order for it to connect to a broadcasting server.

void StopBroadcastingIPAddress ();

Stops broadcasting the IP address of the server.

void StartListening ();

Causes the server to start listening for new clients to connect. When Startup() is first called, the server

automatically starts listening, so it is not necessary to call this method after the first startup. This method is

useful after StopListening() is called.

void StopListening ();

Causes the server to stop listening for new clients to connect. The server will not listen for new clients, even if

Startup() is subsequently called. StartListening() can be called to allow the server to start listening for new

clients again.

object GetValidIPAddresses ();

Retrieves valid IP addresses found on the system. The object returned is of type object[] array, and each

individual element in this object[] array is of type string that specifies an IP address. Returns a zero-length

object array if no valid IP addresses are found on the system. In C++, the return type is a VARIANT which is

of type VT_ARRAY | VT_VARIANT (a SafeArray of variants), where each array element is a VARIANT of

type VT_BSTR.

Server Properties:

bool IsRunning

Returns whether the server is currently running or not. A server that is running is ready to send and receive

data between any connected clients.

bool IsListening

Returns whether the server is currently listening for new clients to connect or not.

int SendReceiveTimeout

Gets or sets the send/receive timeout in milliseconds. The send/receive timeout applies to the timeout for

sending and receiving data. The default value is 5000, or 5 seconds.

int ConnectionTimeout

Gets or sets the connection timeout in milliseconds. The connection timeout is used when a client attempts to

connect to the server. The default value is 5000, or 5 seconds.

www.tangentapi.com

Tangent API Copyright © 2008-2010 Nilesh

Humbad. All rights reserved.

Server Events:

void ConnectedClient(int clientID);

Occurs when a client has connected to the server.

void DisconnectedClient(int clientID);

Occurs when a client has disconnected from the server.

void ReceivedDataFromClient(int clientID, object data);

Occurs when the server has received data from a client. The data is of type object, which allows a number of

types as described in the Object Data section.

Client Methods:

void ConnectToServer (string ipAddress, short port);

Connects the client to a server that is running on the specified IP address and TCP port.

void DisconnectFromServer ();

Disconnects the client from the server.

void SendDataToServer (object data);

Sends data to the server. The data is of type object, which allows a number of types as described in the Object

Data section.

string GetServerIPAddress (int udpPort);

Retrieves the IP address from a server that is broadcasting its IP address. A server must be broadcasting its IP

address on the specified UDP port in order for this method to succeed.

Client Properties:

bool IsConnected

Returns whether the client is connected to a server or not.

int ClientID

Returns the client ID assigned by the server. The client must be connected to a server when this property is

accessed, otherwise an exception is thrown.

int SendReceiveTimeout

Gets or sets the send/receive timeout in milliseconds. The send/receive timeout applies to the timeout for

sending and receiving data. The default value is 5000, or 5 seconds.

int ConnectionTimeout

Gets or sets the connection timeout in milliseconds. The connection timeout is used when the client attempts

to connect to a server. The default value is 5000, or 5 seconds.

www.tangentapi.com

Tangent API Copyright © 2008-2010 Nilesh

Humbad. All rights reserved.

Client Events:

void ReceivedDataFromServer(object data);

Occurs when the client has received data from the server. The data is of type object, which allows a number of

types as described in the Object Data section.

void DisconnectedFromServer();

Occurs when the client has disconnected from the server.

Object Data:

Data that is sent and received is of type object, which allows the following types to be sent and received: bool,

byte, char, date, double, int, uint, short, ushort, long, ulong, single, string, byte[] (byte array), object[] (object

array, where the objects can be any of the types specified here including arrays). In C++, the following types

can be sent and received: VARIANT of type VT_UI1, VT_I1, VT_UI2, VT_I2, VT_UI4, VT_I4, VT_R4,

VT_R8, VT_DATE, VT_BSTR, VT_ERROR, VT_BOOL, VT_I8, VT_UI8, VT_INT, VT_UINT,

VT_ARRAY | VT_UI1 (SafeArray of bytes), VT_ARRAY | VT_VARIANT (SafeArray of variants) where

each element is a variant that can be of any of the types specified here. VT_DISPATCH is not allowed. There

is a maximum length allowed when sending data, and an error will result if this limit is exceeded. For a string

(or VARIANT of type VT_BSTR), the maximum length is 0x007FFFFC characters. For a byte array (or

VT_ARRAY | VT_UI1), the maximum bytes that can be sent is 0x00FFFFF9. For an object array (or

VT_ARRAY | VT_VARIANT), the maximum objects that can be sent is variable, depending on what types of

objects are in the array.

Tangent API Threading Model:

Tangent API is a COM DLL that registers with the threading model “Both”. This means that it can be used in

either a single-threaded apartment where event callbacks are synchronized on the GUI thread, or a multi-

threaded apartment where callbacks are not synchronized thus providing better performance.

Single threaded apartment or STA, allows event callbacks to be synchronized automatically for you via

Windows messaging. In .NET, this allows a developer to modify Windows Form members from within

Tangent API’s event callbacks without having to invoke upon the GUI thread. By default,.NET projects are

configured using the STA model. This is configured by default in the Program.cs file with the [STAThread]

attribute (in C#). The STA model makes Windows Forms development easier, because the developer is

ensured that event callbacks run on the same thread as the GUI, and thus GUI members can be freely modified

from within callbacks. With STA, the developer is freed from the complexity of thread synchronization.

While STA makes development easier in Windows Forms programming, it is not as efficient as the multi-

threaded apartment model or MTA. With MTA, methods can be called from any thread freely and event

callbacks are fired instantly from whichever thread they are on. This does mean the developer may need to

provide any data synchronization. However, MTA provides the ability to run a server that provides the most

efficiency and high-performance, because method and event callbacks do not need to be synchronized using

Windows messaging as with STA. In C# .NET projects, using the MTA model is as simple as changing the

[STAThread] attribute to [MTAThread] in Program.cs. In C++, the threading model is determined by the

second parameter of the function CoInitializeEx, using either COINIT_APARTMENTTHREADED for STA

or COINIT_MULTITHREADED for MTA.

